

GigaDevice Semiconductor Inc.

ARM® Cortex®-M3/4/23/33 32-bit MCU

Application Note

AN036

AN036
Solution of I2C bus lock based on EEPROM communication

2

Table of Contents

Table of Contents ... 2

List of Figures .. 3

List of Table .. 4

1. Introduction .. 5

2. I2C bus lockup ... 6

2.1. I2C bus lock phenomenon .. 6

2.2. Causes of I2C bus lock ... 6

3. Solution to I2C bus lock .. 8

3.1. Forcibly pull up SDA and SCL .. 8

3.2. SCL clock signal release bus ... 9

3.3. Test results .. 10

4. Revision history ... 12

AN036
Solution of I2C bus lock based on EEPROM communication

3

List of Figures

Figure 2-1. I2C bus start and stop signals .. 6

Figure 2-2. I2C bus lock timing ... 7

Figure 3-1. The test of forcely pull up SDA and SCL... 11

Figure 3-2. SCL clock signal release bus test .. 11

AN036
Solution of I2C bus lock based on EEPROM communication

4

List of Table

Table 3-1. Configuration of forcely pull up SDA and SCL in GD project.. 8

Table 3-2. Configuration of SCL clock signal release bus in GD project 9

Table 4-1. Revision history ... 12

AN036
Solution of I2C bus lock based on EEPROM communication

5

1. Introduction

MCU often uses I2C as the master to communicate with the EEPROM. When the I2C master

resets during the communication process, there will be a probability that it will no longer be

able to communicate with the EEPROM. This is called a bus lock. To solve this problem, this

article provides a method to release the I2C bus using software configuration.

AN036
Solution of I2C bus lock based on EEPROM communication

6

2. I2C bus lockup

2.1. I2C bus lock phenomenon

To complete a normal communication task between the master and slave of the I2C, before

establishing the communication, the master must first detect the status of the I2C bus. When

the SCL and SDA lines of the I2C bus are both high, the I2C bus is in an idle state. When the

SCLA is high, the master pulls down the SDA signal to generate a START start signal.

When the I2C master-slave machine ends a communication task, it needs the master to

generate a stop signal, that is, when the SCL is high, the SDA signal is pulled up.

Figure 2-1. I2C bus start and stop signals

SDA

SCL

SDA

SCL

START

STOP

Under normal circumstances, the I2C bus protocol can ensure normal read and write

operations on the bus. However, when the I2C master device is reset (watchdog action,

abnormal on-board power supply causes reset chip action, manual button reset, etc.), and

the slave device is not reset, it may cause I2C bus deadlock. In the state of the bus lock, SCL

maintains a high state, and SDA maintains a low state.

2.2. Causes of I2C bus lock

In the process of I2C master reading and writing, there are two situations that will cause the

bus to lock up.

1. After the master sends the START signal, it controls the SCL to generate 8 clock pulses,

and then pulls the SCL signal low. At this time, the slave outputs the response signal and

pulls the SDA signal to the low level. If the host resets abnormally at this time, SCL will

be released to high level. At this time, if the slave is not reset, it will continue the I2C

response, pulling SDA to a low level all the time, and the response signal will not end until

SCL becomes a low level. However, since the I2C host detects the state of the bus after

resetting, if the SDA signal is low, the I2C bus is occupied, and it will wait for the SCL and

SDA signals to become high. Therefore, when the I2C master is waiting for the slave to

AN036
Solution of I2C bus lock based on EEPROM communication

7

release the SDA signal, the I2C slave is waiting for the master to pull the SCL signal low

to release the response signal. The two wait for each other, and the I2C bus enters a

deadlock state.

2. When the I2C master is reading data, the I2C slave responds and outputs data. If the I2C

master resets abnormally at this moment and the data bit output by the I2C slave is

exactly 0, it will also cause the I2C bus to enter a deadlock state.

Figure 2-2. I2C bus lock timing

AN036
Solution of I2C bus lock based on EEPROM communication

8

3. Solution to I2C bus lock

The I2C bus is locked. The bus can also be released by resetting the slave. But when the

EEPROM is used as a slave, the software cannot be used to reset the slave, and in some

cases, the hardware cannot be reset. Therefore, it is necessary to add the bus release

function when the I2C master establishes a new communication. Since the bus lock is

probabilistic, the bus BUSY state timeout function can be added. The combination of the two

can improve the robustness of the system. Two software solutions are provided below.

3.1. Forcibly pull up SDA and SCL

After the I2C master is reset, the master detects that the I2C bus is always in the BUSY state,

and if the set time is exceeded, the bus is locked. It can be configured as push-pull output by

initializing the SCL and SDA pins of I2C to ordinary GPIO functions. First pull up the SCL

signal, and then pull up the SDA signal, a stop signal is generated by simulation, and then it

is configured as the I2C pin multiplexing function.

Table 3-1. Configuration of forcely pull up SDA and SCL in GD project

/*!

 \brief reset i2c bus

 \param[in] none

 \param[out] none

 \retval none

*/

void i2c_bus_reset()

{

 GPIO_BC(GPIOB) |= GPIO_PIN_6 | GPIO_PIN_7;

gpio_init(GPIOB, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ,

GPIO_PIN_6|GPIO_PIN_7);

 __nop();

 __nop();

 __nop();

 __nop();

 __nop();

 GPIO_BOP(GPIOB) |= GPIO_PIN_6;

 __nop();

 __nop();

 __nop();

 __nop();

 __nop();

 GPIO_BOP(GPIOB) |= GPIO_PIN_7;

 gpio_init(GPIOB, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, GPIO_PIN_6 |

AN036
Solution of I2C bus lock based on EEPROM communication

9

GPIO_PIN_7);

}

/*!

 \brief check the I2C is or not busy

 \param[in] none

 \param[out] none

 \retval none

*/

void check_bus_status(void)

{

 while(i2c_flag_get(I2C0,I2C_FLAG_I2CBSY))

 {

 if(--time_out == 0){

 i2c_bus_reset();

 }

 }

}

3.2. SCL clock signal release bus

Add the I2C bus recovery program in the I2C master. Every time the I2C master device is

reset, if the SDA data line is detected to be pulled low, the SCL clock line in the I2C is

controlled to generate 9 clock pulses (for 8-bit data), so that the I2C slave device can be

suspended The operation is recovered from the deadlock state.

The I2C master initializes the SCL pin as a normal GPIO function and configures it as a push-

pull output. Ensure that 9 clock pulses are sent continuously. In order to ensure normal I2C

communication, first reset the I2C module, then set it, and finally configure it as the I2C pin

multiplexing function. The software configuration under GD32 project is shown in the following

table.

Table 3-2. Configuration of SCL clock signal release bus in GD project

/*!

 \brief reset i2c bus

 \param[in] none

 \param[out] none

 \retval none

*/

void i2c_bus_reset()

{

 uint8_t I = 0;

 gpio_init(GPIOB, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_6);

 /* SCL output clock signal */

AN036
Solution of I2C bus lock based on EEPROM communication

10

 for(I = 0; I < 10; i++){

 gpio_bit_reset(GPIOB, GPIO_PIN_6);

 delay_1us(2);

 gpio_bit_set(GPIOB, GPIO_PIN_6);

 delay_1us(2);

 }

 /* reset I2C */

 i2c_software_reset_config(I2C0, I2C_SRESET_RESET);

 i2c_software_reset_config(I2C0, I2C_SRESET_SET);

 gpio_init(GPIOB, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, GPIO_PIN_6 |

GPIO_PIN_7);

}

/*!

 \brief check the I2C is or not busy

 \param[in] none

 \param[out] none

 \retval none

*/

void check_bus_status(void)

{

 while(i2c_flag_get(I2C0,I2C_FLAG_I2CBSY))

 {

 if(--time_out == 0){

 i2c_bus_reset();

 }

 }

}

3.3. Test results

Test two bus release methods on the GD32F303 platform. The test results are shown in

Figure 3-1. The test of forcely pull up SDA and SCL and Figure 3-2. SCL clock signal

release bus test. The forced pull-up SDA and SCL test is shown in the following figure. When

the I2C bus is locked, SDA is in the low state and SCL is in the high state. When the bus is

released, first pull SCL low, then pull high, and then pull SDA high. Finally, a STOP signal

appears on the I2C bus, and the bus is released. The master can start to establish a new

communication.

AN036
Solution of I2C bus lock based on EEPROM communication

11

Figure 3-1. The test of forcely pull up SDA and SCL

The SCL clock signal release bus test is shown in the following figure. After the I2C bus is

locked, 9 clock signals are sent continuously. Finally, both SDA and SCL are pulled high. The

master detects that the bus is in an idle state and can start to establish a new communication.

Figure 3-2. SCL clock signal release bus test

AN036
Solution of I2C bus lock based on EEPROM communication

12

4. Revision history

Table 4-1. Revision history

Revision No. Description Date

1.0 Initial Release Dec.13 2021

AN036
Solution of I2C bus lock based on EEPROM communication

13

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any

product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and

treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and

treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability

arising out of the application or use of any Product described in this document. Any information provided in this document is provided

only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality

and safety of any application made of this information and any resulting product. Except for customized products which has been

expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,

industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components

in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control

instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,

life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution

control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,

death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling

the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers

shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising

from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers

and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2021 GigaDevice – All rights reserved

	Table of Contents
	List of Figures
	List of Table
	1. Introduction
	2. I2C bus lockup
	2.1. I2C bus lock phenomenon
	2.2. Causes of I2C bus lock

	3. Solution to I2C bus lock
	3.1. Forcibly pull up SDA and SCL
	3.2. SCL clock signal release bus
	3.3. Test results

	4. Revision history

